1 - definizione. Che cos'è 1
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è 1 - definizione

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

World 1-1         
  • Mushroom]] (light green) appears after bumping into the golden block from below, and initially rolls to the right, until it falls off the platform and bounces against the pipe (green). The Mushroom then turns around and rolls toward Mario, who can easily receive it at this point.<ref name=Eurogamer />
LEVEL IN SUPER MARIO BROS.
World 1-1 (Super Mario Bros.); Level 1-1
World 1-1 is the first level of Super Mario Bros., Nintendo's 1985 platform game for the Nintendo Entertainment System.
Matthew 1:1         
VERSE OF THE BIBLE
Mt. 1:1
Matthew 1:1 is the opening verse in the first chapter of the Gospel of Matthew in the New Testament of the Christian Bible. Since Matthew is traditionally placed as the first of the four Gospels, this verse commonly serves as the opening to the entire New Testament.
1 + 1 + 1 + 1 + ⋯         
In mathematics, , also written \sum_{n=1}^{\infin} n^0, \sum_{n=1}^{\infin} 1^n, or simply \sum_{n=1}^{\infin} 1, is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1 can be thought of as a geometric series with the common ratio 1.

Wikipedia

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.

Esempi dal corpus di testo per 1
1. QUALIFYING÷ 1, Rikknen 1min 14.320sec; 2, Button 1÷14.75'; 3, Alonso 1÷14.'04; 4, Fisichella 1÷14.'27; 5, M Schumacher 1÷15.006; 6, Webber 1÷15.070; 7, Heidfeld 1÷15.403; 8, Sato 1÷15.501; ', Trulli 1÷15.532; 10, Klien 1÷15.635; 11, Coulthard 1÷15.67'; 12, Schumacher 1÷15.68'; 13, Massa 1÷16.00'; 14, Villeneuve 1÷16.012; 15, Barrichello 1÷16.230; 16, Albers 1÷17.01'; 17, Doornbos 1÷18.313; 18, Monteiro 1÷18.5''; 1', Karthikeyan no time; 20, Montoya no time.
2. Costa Rica (2–2–1) beat Guatemala 3–2 (1–3–1). Trinidad and Tobago is 1–3–1.
3. FESTIVAL BETTING CHAMPION CHASE: William Hill: Evens Kauto Star (from '–4), 5–1 Ashley Brook (from 7–1), Moscow Flyer (from 5–2), 10–1 Cloone River, Watson Lake, 12–1 Central House (from 20–1), Rathgar Beau, 14–1 Fota Island (from 25–1), 20–1 Contraband, Mister McGoldrick, 25–1 Oneway (from 20–1), 33–1 Monkerhostin, Sporazene, 40–1 River City.
4. Newsweek September 14 1''8, September 28 1''8, October 5 1''8, October 12 1''8, December 21 1''8, November ' 1''8, January181''8, 12.
5. No time÷ 18, J Villeneuve (Can, Sauber Petronas), J Button (GB, BAR Honda), F Massa (Br, Sauber Petronas), C Klien (Austria, Red Bull Cosworth), F Alonso (Sp, Renault), G Fisichella (It, Renault), J Trulli (It, Toyota), R Schumacher (Ger, Toyota). SECOND SESSION÷ 1, ×Zonta 1÷20.531; 2, Montoya 1÷21.583; 3, Rikknen 1÷21.735; 4, ×De la Rosa 1÷21.'22; 5, Webber 1÷22.032; 6, Heidfeld 1÷22.107; 7, ×Liuzzi 1÷22.253; 8, Trulli 1÷22.278; ', Fisichella 1÷22.440; 10, Alonso 1÷22.5'4; 11, Klien 1÷22.600; 12, M Schumacher 1÷22.74'; 13, Massa 1÷23.052; 14, R Schumacher 1÷23.126; 15, Villeneuve 1÷23.208; 16, Barrichello 1÷23.213; 17, Sato 1÷23.223; 18, Button 1÷23.415; 1', Coulthard 1÷23.506; 20, Monteiro 1÷23.''4; 21, Karthikeyan 1÷24.202; 22, Dornbos 1÷24.233; 23, Albers 1÷24.264; 24, ×Toccacelo 1÷25.245.